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Lifetimes of some 2s22 p 2 P3/2 states from variational theory
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A measured lifetime of exceptional accuracy has been reported for the 2p 2P3/2 state of Ar13+ that is in good
agreement with theory, neglecting the effect of the anomalous magnetic moment. When perturbation theory is
used to estimate the effect of the latter, the discrepancy increases. In this paper, results from a fully relativistic
variational calculation are presented. By using the Gordon transformation, an expression is derived for the
transition matrix element. Lifetimes without and with the effect of the anomalous magnetic moment are reported,
both in excellent agreement with perturbation theory.
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I. INTRODUCTION

In nonrelativistic theory the line strength for a magnetic
dipole (M1) transition between fine-structure levels of a con-
figuration is independent of the wave function. Thus theoretical
predictions of lifetimes based on transition rates computed
using observed wavelengths are all in remarkable agreement.
This was the case for the decay of the 3d 2D5/2 metastable
state of Kr17+ [1] where, for seven theoretical lifetimes, all
are in the narrow range of 23.83–24.16 ms. Two experimental
lifetimes are available, both obtained from electron beam ion
trap (EBIT) measurements. The lifetime with the smaller error
bar, namely, 24.48 ± 0.32 ms measured by Guise et al. [1],
is slightly longer than the theory predictions, whereas the
measurement with a larger uncertainty, namely, 22.7 ± 1.0 ms
reported by Träbert et al. [2], is significantly shorter. A
comparable situation is observed in a table of the paper by
Tupitsyn et al. [3] for the decay of the 2p 2P3/2 state in Ar13+

and neighboring members of the isoelectronic sequence. In
their paper, the theoretical lifetimes have not been rescaled for
observed wavelengths, so a slightly larger variation is shown
(about 2%), but this is still much smaller than the variation in
experiment which ranges from 8.7(5) to 9.70(15) ms or 11%.
The Heidelberg EBIT lifetime measurement of 9.573(4)(5)
(stat/syst) ms for the 2p 2P3/2 state of Ar13+ is among the
most accurate, if not the most accurate, lifetime measurement
ever reported [4,5] and is in excellent agreement with theory
when the effect of the anomalous magnetic moment (AMM)
of the electron is ignored. Their simple estimate of the effect is
0.46%, an effect much larger that the experimental uncertainty
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of this measurement. This observation has spurred some
in-depth investigations.

Artemyev et al. [6] have performed an ab initio study
of the 2s22p 2P1/2-2P3/2 transition energy for the argon ion,
using perturbation theory and rigorous QED calculations for
capturing electron-correlation and the Breit corrections to
several orders. Their final value for the transition energy
was 22 656.1(3.6) cm−1, in essentially exact agreement with
the value of 22 656.239 cm−1 derived from observation [7].
This value had also been reported in the Tupitsyn et al. [3]
paper where additional transition energies were reported for
neighboring ions: For K14+ the error in the transition energy
is somewhat larger, namely, 11 cm−1.

The paper by Tupitsyn et al. [3] on the lifetime of the 2s22p
2P3/2 state of Ar13+ is a separate calculation combining several
methods. Elaborate calculations are performed in the no-pair
Hamiltonian to determine a many-electron wave function
where expansion coefficients are used to compute the transition
rate using the line strength operator

O = L + gsS, (1)

where gs = 2 in relativistic theory but gs = 2(1 +
ae) when AMM corrections are included. Here, ae =
0.001 159 652 180 73(28) is the AMM correction known
to high accuracy and whose QED prediction agrees with
experiment [8] to the accuracy shown. Contributions are
determined from the negative-energy continuum, the higher-
order interelectronic corrections, and the AMM effect on the
M1 transition amplitude by correcting for the anomalous
magnetic moment of a free electron. The final predicted
lifetime for Ar13+ was 9.582 ms without the AMM correc-
tion and 9.538(2) ms with the correction. Thus, experiment
is in better agreement with theory without than with the
correction.
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Recently, a number of studies have been reported for the
boronlike sequence not included in the earlier study. Energy
levels, lifetimes, and E1, M1, E2, and M2 transitions of B-like
(Z = 7−30) ions have been reported by Rynkun et al. [9]
using multiconfiguration Dirac-Hartree-Fock (MCDHF) and
relativistic configuration-interaction (RCI) methods. Marques
et al. [10] calculated the fine-structure energy splitting of
2s22p 2P levels and lifetimes of the 2P3/2 level in the
boron isoelectronic sequence for Z = 14 − 36, 54, 64, 79,
83, and 92 using the Dirac-Fock multiconfiguration method
with both quantum-electrodynamic and electronic correlation
corrections. Neither considered the QED correction.

In this paper we analyze results from relativistic variational
methods in which a wave function is determined for the
initial and final state from which the transition rate is
determined in terms of an M1 transition matrix element and
the transition energy. An expression for the transition operator
is derived from first principles that takes into account radiative
corrections in the relativistic theory of photon emission and
absorption. The line strength is derived from the transition
probability. This relativistic expression for M1 transitions
as derived by Grant [11,12] does not include a gs factor.
Using the Gordon form of the charge-current vector, a different
expression has been derived in which the effective magnetic
2k-pole operator is split into three parts and the anomalous
magnetic moment can be introduced in order to capture the
AMM effect on the lifetime. A detailed comparison will be
made of the differences along the isoelectronic sequence of the
line strength derived from the two expressions as well as with
other theory. All present calculations were performed using the
general relativistic atomic structure package GRASP2K [13,14].

II. RELATIVISTIC THEORY OF MAGNETIC
DIPOLE TRANSITIONS

The transition rate for the emission of a single photon from
an upper state u to a lower state l is given by [[11], Sec. 4]

Au→l = 2π |〈�u|H|�l〉|2, H = jμ(x)aμ(x), (2)

whereH is the Hamiltonian describing the interaction between
the atomic electron charge-current vector jμ(x) and the radia-
tion field 4-potential aμ(x) at the space-time point x = (ct,x).
Summation over pairs of space-time components μ = 0,1,2,3
is implied. �u and �l are wave functions for the initial upper
u and final lower l states, respectively. Each � is an atomic
state function (ASF) of the form

�(�; πJ ) =
∑

j

aj�(γj ; πJ ), (3)

where � is a label for the state, π its parity, and J its
total angular momentum. � is an antisymmetric, coupled
configuration state function (CSF) of parity π and total angular
momentum J . Here, γ specifies the configuration and other
quantum numbers that uniquely designate the CSF.

CSFs are constructed from antisymmetrized products of
one-electron Dirac 4-component spinors with the general form

(in spherical polar coordinates)

ψnκm(x) = 1

r

(
Pnκm(r)χκm(θ,ϕ)

iQnκm(r)χ−κm(θ,ϕ)

)
e−iEt , (4)

where n characterizes the orbital energy, and E the total energy
of the state. The two component spherical spinors χκm(θ,ϕ)
couple the spherical harmonic functions Ylml

(θ,ϕ) and the spin
function. For “positive-energy” states, Pnκ (r) and Qnκ (r) are
referred to as large and small components, respectively.

The interaction H of the electrons with the radiation field
can be expressed in terms of irreducible tensor operators
T acting on the coordinates of each active electron. Their
symmetry properties ensure that each such irreducible tensor
operator can be treated independently. In the case of the
magnetic dipole,

TM1(xi ,ω) = −ecα · A(xi ,ω),
(5)

cA(xi ,ω) = 3i[e × xi/ri]
1j1(ωri/c),

where A(xi ,ω) is the M1 vector potential acting on the ith
electron, ω = Eu − El > 0 is the photon energy, −ecα the
Dirac matrix operator representing the spacelike part of the
electron current, e denotes the photon polarization vector, and
j1(ωri/c) is a spherical Bessel function of order 1. Then it can
be shown that [11,12]

AM1
u→l = 2ω

c
|〈�(�u; πuJu)‖TM1‖�(�l ; πlJl)〉|2/gu, (6)

where gu = 2Ju + 1. In the case of one-electron transitions,
α → β (as for the ground configuration of boronlike systems)
[[11], Sec. 4],

〈α‖TM1‖β〉
= 3

c
√

2
(−1)jα+1/2

×[(2jα + 1)(2jβ + 1)]1/2

(
jα 1 jβ

1/2 0 −1/2

)
(κα + κβ)

×
∫ ∞

0
{P ∗

α (r)Qβ(r) + Q∗
α(r)Pβ(r)}j1(ωr/c)dr. (7)

Because of the presence of the spherical Bessel function in
the integrand, the square of the transition amplitude is energy
dependent. Using the usual definition for an M1 transition in
terms of the line strength S, namely,

AM1
u→l = 4

3

(ω

c

)3 SM1
u→l

gu

,

it follows that

SM1
u→l = 3

2

( c

ω

)2
|〈u‖TM1‖l〉|2. (8)

The standard form of the relativistic charge-current density,
jμ = −ecψ̄γ μψ , on which (5) is based provides no obvious
way to include the AMM correction. However, Gordon’s
decomposition [see Ref. [15] and Eq. (2-54) in Ref. [16])
separates the orbital and spin charge currents, replacing (5) by

TG,M1 = TC,1 + gs(TE,1 + TB,1), (9)

where gs = 2 is the Dirac g factor. The first term represents the
interaction of the orbital motion of a structureless electron with
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the photon magnetic field, and the others the interaction of the
electron spin with the photon’s electric and magnetic fields,

respectively. The full relativistic 1-electron reduced matrix
elements are

〈α‖TC,1‖β〉 = − 3

2
√

2c

{
(κα‖l‖κβ)

∫ ∞

0
P ∗

α (r)Pβ(r)
1

r
j1(ωr/c)dr −(−κα‖l‖ − κβ)

∫ ∞

0
Q∗

α(r)Qβ(r)
1

r
j1(ωr/c)dr

}
, (10)

〈α‖TE,1‖β〉 = − 3ω

2c2

{
(κα‖C1 ⊗ s‖ − κβ)

∫ ∞

0
P ∗

α (r)Qβ(r)j1(ωr/c)dr + (−κα‖C1 ⊗ s‖κβ)
∫ ∞

0
Q∗

α(r)Pβ(r)j1(ωr/c)dr

}
,

(11)

〈α‖TB,1‖β〉 = ω

2 c2

{√
2

[
(κα‖s‖κβ)

∫ ∞

0
P ∗

α (r)Pβ(r)j0(ωr/c)dr −(−κα‖s‖ − κβ)
∫ ∞

0
Q∗

α(r)Qβ(r)j0(ωr/c)dr

]

+
√

5

[
(κα‖C2 ⊗ s‖κβ)

∫ ∞

0
P ∗

α (r)Pβ(r)j2(ωr/c)dr −(−κα‖C2 ⊗ s‖ − κβ)
∫ ∞

0
Q∗

α(r)Qβ(r)j2(ωr/c)dr

]}
,

(12)

where Ck is the irreducible tensor operator with components Ckq(θ,ϕ) = [4π/(2k + 1)]1/2Y
q

k (θ,ϕ). In practice, ω/c is usually
a small number, so that all these expressions are dominated by the lowest power of ω/c in a power-series expansion.

In the Pauli approximation, the relative magnitude of small components is O(1/c). So, in the case of the 2s22p 2P o
3/2-2s22p 2P o

1/2

transition in Ar13+, when terms of order O(1/c2) are omitted, the expressions simplify considerably. For the standard method,
as implemented in GRASP,

〈2p−‖TM1‖2p+〉 ≈
√

6
∫ ∞

0

[
P ∗

2p− (r)Q2p+(r) + Q∗
2p− (r)P2p+(r)

]
j1(ωr/c)dr, (13)

whereas, in the Gordon form, the reduced matrix element for the convection current interaction is

〈2p−‖TC,1‖2p+〉 ≈
√

6

c

∫ ∞

0
P ∗

2p− (r)P2p+(r)j1(ωr/c)
dr

r
, (14)

〈2p−‖TE,1‖2p+〉 is negligible, and the matrix element for the spin B-field interaction is

〈2p−‖TB,1‖2p+〉 ≈ −
√

2

3

ω

c2

{∫ ∞

0
P ∗

2p− (r)P2p+(r)j0(ωr/c)dr +1

4

∫ ∞

0
P ∗

2p− (r)P2p+(r) j2(ωr/c)dr

}
. (15)

The transition matrix element of Eq. (9) can now be evaluated
with gs = 2 in the standard Dirac form or with gs = 2(1 + ae)
in order to include the AMM correction. Notice that, unlike
the standard form [Eq. (13)] where the radial integral depends
equally on the large and small components of the orbitals
entering into the transition, in the Gordon form, all the
significant radial integrals are expressed in terms of the
large component alone. Since j0(ωr/c) = 1 + O(ωr/c)2 and
j1(ωr/c)/r = (ωr/3c) [1 + O(ωr/c)2], the leading terms of
both (14) and (15) are of the same order O(ω/c2), so that SM1

u→l

[Eq. (8)] is of order O(1/c2) and is roughly independent of ω.

III. GRASP2K CALCULATIONS FOR THE 2s22 p
2 P1/2,3/2 STATES OF Ar13+

Systematic variational calculations using the multiconfig-
uration Dirac-Hartree-Fock method have been published for
selected elements of the boronlike sequence by Rynkun et al.
[9]. Briefly, starting with the multireference (MR) set of CSFs,
2s22p and 2p3, for J = 1/2 and J = 3/2, wave-function
expansions over a basis of configuration state functions were
obtained through single (S) and double (D) substitutions
to orbitals in an active set, characterized by the maximum
principal quantum number n and the maximum orbital angular
quantum number l � 6. Thereafter, the maximum value of
l decreased. For n = 8, l was limited to l � 5, whereas

for n = 9, the limit was l � 4. These calculations were
performed using the Dirac-Coulomb Hamiltonian and a Fermi
model for the nuclear potential. In a separate configuration
interaction calculation the frequency-dependent Breit, vacuum
polarization (VP), and self-energy (SE) matrix elements were
added to the Hamiltonian matrix. The wave functions from the
latter were then used to determine the transition rate.

One of the factors affecting the accuracy of the transition
rate in a variational procedure is the accuracy of the transition
energy [17,18]. Unlike the earlier study [9], where all the levels
of a selected spectrum and all allowed transitions between
them were reported, in this work only the M1 transition is of
concern. Also, in view of the recent publication by Artemyev
et al. [6] who break down the contributions to the total
energy from different corrections, it is possible to evaluate the
reliability of the way in which corrections are included in the
GRASP2K computational procedure, particularly with respect
to Breit and QED corrections.

Table I shows the convergence of the individual total
energies (in Eh), the transition energy in cm−1, as well as
both ab initio (ai) and scaled (adj) transition rates for the
three formulas, scaled so that the transition rate corresponds
to the rate obtained when the observed transition energy is
used with a given line strength. Though the total energies
are systematically decreasing (as required by theory), the
energy difference for calculations up to n = 9 have been a
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TABLE I. Total energies (Eh), transition energies �E = ω (cm−1) and transition rates A (s−1) of M1 transition 2s22p 2P o
3/2-2s22p 2P o

1/2

for boronlike Ar13+ from RCI calculations including Breit and QED corrections. Reported are ab initio (ai) and adjusted (adj) transition rates.
The latter were obtained by scaling the computed transition rates by r3 where r = �Eobserved/�Ecomputed. Results in lines with “MR” are those
from calculations with an enlarged MR set.

A (Standard) A (Gordon) A (Gordon_AMM)

n E(2P o
1/2) E(2P o

3/2) �E ai adj ai adj ai adj

MR −406.9250935 −406.8219645 22 634.21 104.076 104.380 104.081 104.385 104.564 104.870
3 −407.0061715 −406.9030321 22 636.49 104.107 104.380 104.116 104.389 104.599 104.873
4 −407.0288719 −406.9256172 22 661.79 104.455 104.378 104.457 104.380 104.943 104.866
5 −407.0386858 −406.9354266 22 662.78 104.472 104.382 104.470 104.380 104.956 104.865
6 −407.0434877 −406.9401939 22 670.37 104.573 104.378 104.575 104.380 105.061 104.865
7 −407.0457974 −406.9425121 22 668.50 104.546 104.376 104.549 104.379 105.035 104.865
8 −407.0469090 −406.9436277 22 667.62 104.533 104.376 104.537 104.380 105.022 104.864
9 −407.0474503 −406.9441684 22 667.75 104.536 104.377 104.539 104.380 105.024 104.864
9_MR −407.0475470 −406.9442626 22 668.29 104.543 104.376 104.546 104.379 105.032 104.865
10_MR −407.0478115 −406.9445273 22 668.25 104.542 104.376 104.546 104.380 105.031 104.864

Other theory
Cheng [19] 22 795
Galavis [20] 22 362
Dong [21] 22 636
Artemyev et al. [6] 22 656.1(3.6)

Observed
NIST [7] 22 656.239

bit irregular, although it has decreased by only 0.75 cm−1

in going from n = 7 to n = 9. The effect on this trend of
restricting the l-quantum number when n > 7 was found to
be negligible (0.2 cm−1). At the final stage the multireference
sets for the states of the 2s22p and 2p3 configurations were
enlarged to include {2s22p,2p3,2s2p3d,2p3d2} in order to
estimate the uncertainty in our result. This multireference
was chosen based on the criteria that it should contain the
configurations that had the largest weights in the preceding
self-consistent field calculations. Among the states generated
by single-double (SD) excitations from the multireference set,
only those interacting with at least one member of the set were
retained. The effect of restricting the MR set is the difference
between the n = 9_MR value shown in the table and the n = 9
energy or an increase of 0.54 cm−1.

Also included in this table are some of the more accurate
transition energies from other theories. The Dong [21] value
agrees exactly with the present n = 3 results. All theories
are compared with the critically evaluated NIST value [7].
The systematic computed energies have converged to a value
of 22 667.75 cm−1 with an estimated error of 0.5 cm−1 in
the Dirac-Coulomb approximation (difference between the
10_MR and n = 9 transition energies). Adjusted transition
rates have converged to at least four significant digits.

It is important to see how the present method has included
various corrections to the Dirac-Coulomb Hamiltonian, a
procedure that differs from what is adopted in perturbation
theory methods [3,6]. For each n, variational calculations are
performed for the Dirac-Coulomb Hamiltonian,

HDC =
N∑

i=1

[
cαi · pi + (βi − 1)c2 + V N

i

] +
N∑

i>j

1

rij

, (16)

where V N is the monopole part of the electron-nucleus
Coulomb interaction, α and β the 4 × 4 Dirac matrices,
and c the speed of light in atomic units. These calculations
optimized the large (P ) and small (Q) radial factors of the
one-electron orbitals. This was followed by a CI calculation for
the Dirac-Coulomb-Breit Hamiltonian HDCB = HDC + HBreit,
where

HBreit = −
N∑

i<j

[
αi · αj

cos(ωij rij /c)

rij

+ (αi · ∇i)(αj · ∇j )
cos(ωij rij /c) − 1

ω2
ij rij /c2

]
(17)

is the transverse photon interaction.
Next, the matrix element for vacuum polarization, HVP, is

added to the diagonal matrix elements,

〈γ J |HVP|γ ′J 〉 =
nw∑
a=1

wa

∫ ∞

0
VVP(r)u†

a(r)ua(r)dr, (18)

where ua is the radial spinor, u
†
a is the Hermitian conjugate

of ua , and VVP(r) includes vacuum polarization potentials of
both second and fourth order in QED perturbation theory.

Finally, the self-energy contributions HSE based on a
screened hydrogenic method are added to the diagonal matrix
elements for each orbital of the CSF, namely,

〈γ J |HSE|γ ′J 〉 =
nw∑
a=1

waESE(a), (19)

where nw is the number of subshells in the CSF, wa is the
number of electrons in subshell a in CSF, and ESE(a) is the
one-electron self-energy of an electron in subshell a.
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TABLE III. Comparison of contributions to the ground state
2s22p 2P1/2 total energy (in cm−1) from the present work with that of
Marques et al. [10].

Contrib. Present (n = 9) Ref. [10]

DHF+Corr.+VP −89377444 −89374349
Breit 20143 20406
SE 20712 20720
Total −89336589 −89333223

As additional operators are included in the Hamiltonian,
the difference in the energy defines the contribution from the
most recently added operator. The contribution to the energy
(eigenvalue) is not totally independent of the order in which
corrections are added, but in the present work we assume
the above order. Thus a second-order perturbation correction
involving both the Coulomb operator and the Breit operator
would be a Breit correction in this process. The energy from
a HDC calculation defines the correlation correction relative to
the Dirac-Hartree-Fock energy for the single 2s22p CSF.

Table II shows the convergence of the correlation, Breit,
vacuum polarization, and self-energy corrections as a function
of n from the above procedure. Also shown is the Dirac-
Hartree-Fock energy, the total energy for the 2s22p 2P1/2 and
2s22p 2P3/2 states, and the transition energy for each n. From
this table it is clear that the correlation, Breit, and vacuum
polarization are changing with the wave-function expansion
and are interrelated, whereas self-energy is less affected. The
correlation and Breit corrections to the total energies of the
individual states have not converged, but because core-core
effects largely cancel in the transition energy, the different
effects have converged for the transition energy.

GRASP2K [13,14] is often compared with results from
MCDFGME [22,23]. In Table III the present contributions to
the total energy of the 2s22p 2P o

1/2 ground state are compared
with those reported by Marques et al. [10] using the MCDFGME

code. That correlation was limited in their work is clearly
evident from the higher total energy. The Breit correction
is similar to the n = 5 correction in the present work. In
order to include as much of the Breit correction in a single
(or a few) configuration calculation in MCDFGME [22,23] as
possible, the Breit operator is included in the variational
calculation for the orbitals so that, by Brillouin’s theorem,
certain correlation effects are included implicitly. Since the
correlation and the Breit correction interact, and the Breit
operator is computationally intensive, for a variational method

TABLE IV. Comparison of contributions to the transition energy
(in cm−1) in Ar13+ from the present work with that of Artemyev et al.
[6] based on the core-Hartree (CH) potential.

Contrib. Present work Ref. [6]

DHF 24389.967 24343.0
Corr. −648.705 −1002.9
Breit −1135.321 −728.2
QED 61.811 45.0
Total 22667.752 22656.9

TABLE V. Transition energies �E = ω (cm−1) and line strength
S of M1 transition 2s22p 2P o

3/2-2s22p 2P o
1/2 for boronlike Ar from RCI

calculations including Breit and QED corrections.

n �E S (Standard) S (Gordon) S (Gordon_AMM)

MR 22 634.21 1.33100 1.33106 1.33724
3 22 636.49 1.33099 1.33110 1.33728
4 22 661.79 1.33097 1.33100 1.33719
5 22 662.78 1.33102 1.33100 1.33718
6 22 670.37 1.33097 1.33099 1.33717
7 22 668.50 1.33095 1.33099 1.33717
8 22 667.62 1.33094 1.33099 1.33717
9 22 667.75 1.33095 1.33099 1.33717

it is more efficient to include the operator only in the final CI
calculation. On the other hand, the SE correction is relatively
independent of the Breit and correlation effects and would be
expected to be similar for the two methods. Table III shows that
the present SE correction is 8 cm−1 smaller than the Marques
et al. value [10].

Artemyev et al. [6] tabulate contributions to the transition
energy for various initial potentials. Results from their core-
Hartree potential are compared in Table IV with the present
work. Included in the correlation category was the first-order
interaction energy. All the second-order or higher-interaction
Breit contributions have been included as Breit corrections,
and all contributions associated with QED are listed here as
the QED correction. Exact agreement is not expected, although
the sum of contributions should agree with the observed
transition energy. This comparison suggests that the present
contributions to the QED correction are somewhat too large
in the GRASP2K code. From Table II it is seen that n = 5
results are in better agreement than those from n = 9 which
included more correlation orbitals. With a QED contribution
in agreement with the correction obtained by Artemyev, the
two calculations would be in excellent agreement. Even the
DHF value would improve agreement.

Table V shows the line strength (derived from the transition
rates) for the standard GRASP2K [Eq. (7)] and Gordon [Eq. (9)
without and with the AMM correction] formulas for energy
adjusted transition rates. Clearly evident is that the first two are
identical to four decimal places whereas the third has increased
by 0.46%. In nonrelativistic theory the line strength for the MR

TABLE VI. Energy adjusted lifetimes τ (ms) of the 2s22p 2P o
3/2

level for boronlike Ar13+ from RCI calculations including Breit and
QED corrections.

n τ (Gordon) τ (Gordon_AMM)

MR 9.57990 9.53565
3 9.57958 9.53534
4 9.58036 9.53599
5 9.58042 9.53606
6 9.58042 9.53610
7 9.58043 9.53610
8 9.58041 9.53617
9 9.58040 9.53615
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set is exactly 4/3. The slight deviation noticed in the table is
due to the fact that the orbitals for 2p1/2 and 2p3/2 are not
exactly the same arising from a relativistic effect. The effect
of correlation is small and the line strength has converged to
five decimal places by n = 6. Because of the similarity of line
strengths for standard GRASP2K and Gordon formula, results
for the former will not be consider further in the remaining
tables.

Table VI shows the convergence of the energy adjusted
lifetimes for the Gordon formulas, without and with the AMM
correction. The energy adjusted values have converged to at
least four decimal places.

IV. THE BORONLIKE SEQUENCE

The analysis described above for Ar13+ has been applied
to the boronlike sequence. Figure 1 shows that, indeed, the
line strengths from the GRASP2K and Gordon expressions are
essentially identical and that the AMM correction remains
similar for a wide range on Z.

In Table VII the present energy adjusted lifetimes from
the Gordon form, without and with the AMM correction, are
listed for selected elements of the boronlike sequence. Also
listed are some other experimental values. For Ar13+, the
other (earlier) lifetimes have much larger uncertainties than

FIG. 1. Line strength (S) dependence on Z for
2s22p 2P o

3/2-2s22p 2P o
1/2 M1 transitions for boronlike ions.

the Heidelberg EBIT value. In comparison with the present
findings, the Livermore EBIT measurement [25] is on the

TABLE VII. Lifetimes τ (in ms) of the 2s22p 2P o
3/2 level for boron isoelectronic sequences from RCI calculations including Breit and QED

corrections. Reported are the adjusted lifetimes without and with the AMM corrections from the present work. Observed energies were taken
from NIST [7]. Experimental lifetimes are followed by uncertainty in ms given in parentheses whereas theoretical lifetimes from [10] have
been energy adjusted.

Ion Z τ (Gordon) τ (Gordon_AMM) τ (Expt.) τ (Theory [10])

O3+ Z = 8 1.9358 × 106 1.92687 × 106

F4+ Z = 9 2.6960 × 105 2.6835 × 105

Ne5+ Z = 10 4.9858 × 104 4.9628 × 104

Na6+ Z = 11 1.1441 × 104 1.1388 × 104

Mg7+ Z = 12 3.0913 × 103 3.0770 × 103

Al8+ Z = 13 9.5193 × 102 9.4753 × 102

Si9+ Z = 14 3.2588 × 102 3.2437 × 102 3.259 × 102

P10+ Z = 15 1.2204 × 102 1.2147 × 102 1.221 × 102

S11+ Z = 16 4.9141 × 101 4.8913 × 101 4.915 × 101

Cl12+ Z = 17 2.1108 × 101 2.1011 × 101 2.12 × 101(0.6) [24] 2.111 × 101

2.11 × 101(0.5) [24]
Ar13+ Z = 18 9.5804 9.5361 9.573 (0.006) [4,5] 9.582

9.582a 9.538a 9.70 (0.15) [25]
9.12 (0.18) [26]

K14+ Z = 19 4.5614 4.5403 4.47 (0.10) [27] 4.563
Ca15+ Z = 20 2.2886 2.2781 2.289
Sc16+ Z = 21 1.1731 1.1677 1.174
Ti17+ Z = 22 6.2704 × 10−1 6.2414 × 10−1 6.27 × 10−1(0.010) [28] 6.273 × 10−1

V18+ Z = 23 3.4547 × 10−1 3.4387 × 10−1 3.456 × 10−1

Cr19+ Z = 24 1.9542 × 10−1 1.9451 × 10−1 1.955 × 10−1

Mn20+ Z = 25 1.1383 × 10−1 1.1330 × 10−1 1.138 × 10−1

Fe21+ Z = 26 6.7529 × 10−2 6.7217 × 10−2 6.755 × 10−2

Co22+ Z = 27 4.1352 × 10−2 4.1161 × 10−2 4.137 × 10−2

Ni23+ Z = 28 2.5366 × 10−2 2.5248 × 10−2 2.537 × 10−2

Cu24+ Z = 29 1.5983 × 10−2 1.5909 × 10−2 1.599 × 10−2

Kr31+ Z = 36 9.4009 × 10−4 9.3575 × 10−4 9.404 × 10−4

Mo37+ Z = 42 1.2587 × 10−4 1.2529 × 10−4

aFrom Tupitsyn et al. [3].
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high side, at the edge of their 1σ error range, while the result
obtained by Moehs and Church [26] is low, beyond their 1σ

error. The experimental uncertainties for the measurements for
Cl12+ [24], K14+[27], and Ti17+ [28] each encompass both
theoretical results, with and without AMM corrections, and
cannot discriminate between the two. The ab initio lifetimes
reported by Marques et al. [10] have been adjusted to observed
wavelengths in this table and are in good agreement with the
present lifetimes without the AMM correction.

V. CONCLUSIONS

In this paper, the lifetime of the 2s22p 2P3/2 level of Ar13+

has been investigated in detail using a fully relativistic vari-
ational method. The accuracy of the resulting wave function
defines the accuracy of the line strength and hence that of the

lifetime when the observed wavelength is used for computing
the transition probability. Our results of [9.5804(16) ms,
9.5361(16) ms] for the lifetime, without and with the AMM
correction, respectively, is in excellent agreement with the
[9.582(2) ms, 9.538(2) ms] values reported by Tupitsyn et al.
[3]. These values need to be compared with the most accurate
measurement by Lapierre et al. [4]. Including the QED
correction in the transition operator increases the line strength
and hence lowers the lifetime. Stone [29], in his paper deriving
the expression for the Breit interaction, includes a gs factor
for some contributions. For consistency, this AMM effect on
the Breit operator should also be included, but a preliminary
investigation showed that the effect on the line strength is
negligible. The experimental value is in better agreement with
the higher value of the lifetime without the correction. Thus
the source of the discrepancy remains unresolved.
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[28] E. Träbert, G. Gwinner, A. Wolf, X. Tordoir, and A. G. Calamai,
Phys. Lett. A 264, 311 (1999).

[29] A. P. Stone, Proc. Phys. Soc. 77, 786 (1961).

022505-8

http://dx.doi.org/10.1103/PhysRevA.89.040502
http://dx.doi.org/10.1103/PhysRevA.89.040502
http://dx.doi.org/10.1103/PhysRevA.89.040502
http://dx.doi.org/10.1103/PhysRevA.89.040502
http://dx.doi.org/10.1103/PhysRevA.64.042511
http://dx.doi.org/10.1103/PhysRevA.64.042511
http://dx.doi.org/10.1103/PhysRevA.64.042511
http://dx.doi.org/10.1103/PhysRevA.64.042511
http://dx.doi.org/10.1103/PhysRevA.72.062503
http://dx.doi.org/10.1103/PhysRevA.72.062503
http://dx.doi.org/10.1103/PhysRevA.72.062503
http://dx.doi.org/10.1103/PhysRevA.72.062503
http://dx.doi.org/10.1103/PhysRevLett.95.183001
http://dx.doi.org/10.1103/PhysRevLett.95.183001
http://dx.doi.org/10.1103/PhysRevLett.95.183001
http://dx.doi.org/10.1103/PhysRevLett.95.183001
http://dx.doi.org/10.1103/PhysRevA.73.052507
http://dx.doi.org/10.1103/PhysRevA.73.052507
http://dx.doi.org/10.1103/PhysRevA.73.052507
http://dx.doi.org/10.1103/PhysRevA.73.052507
http://dx.doi.org/10.1103/PhysRevLett.98.173004
http://dx.doi.org/10.1103/PhysRevLett.98.173004
http://dx.doi.org/10.1103/PhysRevLett.98.173004
http://dx.doi.org/10.1103/PhysRevLett.98.173004
http://physics.nist.gov/asd
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1016/j.adt.2011.08.004
http://dx.doi.org/10.1016/j.adt.2011.08.004
http://dx.doi.org/10.1016/j.adt.2011.08.004
http://dx.doi.org/10.1016/j.adt.2011.08.004
http://dx.doi.org/10.1140/epjd/e2012-30338-3
http://dx.doi.org/10.1140/epjd/e2012-30338-3
http://dx.doi.org/10.1140/epjd/e2012-30338-3
http://dx.doi.org/10.1140/epjd/e2012-30338-3
http://dx.doi.org/10.1088/0022-3700/7/12/007
http://dx.doi.org/10.1088/0022-3700/7/12/007
http://dx.doi.org/10.1088/0022-3700/7/12/007
http://dx.doi.org/10.1088/0022-3700/7/12/007
http://dx.doi.org/10.1016/j.cpc.2013.02.016
http://dx.doi.org/10.1016/j.cpc.2013.02.016
http://dx.doi.org/10.1016/j.cpc.2013.02.016
http://dx.doi.org/10.1016/j.cpc.2013.02.016
http://ddwap.mah.se/tsjoek/compas
http://dx.doi.org/10.1007/BF01327881
http://dx.doi.org/10.1007/BF01327881
http://dx.doi.org/10.1007/BF01327881
http://dx.doi.org/10.1007/BF01327881
http://dx.doi.org/10.1088/0031-8949/2009/T134/014019
http://dx.doi.org/10.1088/0031-8949/2009/T134/014019
http://dx.doi.org/10.1088/0031-8949/2009/T134/014019
http://dx.doi.org/10.1088/0031-8949/2009/T134/014019
http://dx.doi.org/10.1088/0953-4075/43/7/074020
http://dx.doi.org/10.1088/0953-4075/43/7/074020
http://dx.doi.org/10.1088/0953-4075/43/7/074020
http://dx.doi.org/10.1088/0953-4075/43/7/074020
http://dx.doi.org/10.1016/0092-640X(79)90006-8
http://dx.doi.org/10.1016/0092-640X(79)90006-8
http://dx.doi.org/10.1016/0092-640X(79)90006-8
http://dx.doi.org/10.1016/0092-640X(79)90006-8
http://dx.doi.org/10.1051/aas:1998435
http://dx.doi.org/10.1051/aas:1998435
http://dx.doi.org/10.1051/aas:1998435
http://dx.doi.org/10.1051/aas:1998435
http://dx.doi.org/10.1238/Physica.Topical.092a00294
http://dx.doi.org/10.1238/Physica.Topical.092a00294
http://dx.doi.org/10.1238/Physica.Topical.092a00294
http://dx.doi.org/10.1238/Physica.Topical.092a00294
http://dirac.spectro.jussieu.fr/mcdf/
http://dx.doi.org/10.1103/PhysRevA.66.052507
http://dx.doi.org/10.1103/PhysRevA.66.052507
http://dx.doi.org/10.1103/PhysRevA.66.052507
http://dx.doi.org/10.1103/PhysRevA.66.052507
http://dx.doi.org/10.1086/309427
http://dx.doi.org/10.1086/309427
http://dx.doi.org/10.1086/309427
http://dx.doi.org/10.1086/309427
http://dx.doi.org/10.1103/PhysRevA.58.1111
http://dx.doi.org/10.1103/PhysRevA.58.1111
http://dx.doi.org/10.1103/PhysRevA.58.1111
http://dx.doi.org/10.1103/PhysRevA.58.1111
http://dx.doi.org/10.1103/PhysRevA.64.034501
http://dx.doi.org/10.1103/PhysRevA.64.034501
http://dx.doi.org/10.1103/PhysRevA.64.034501
http://dx.doi.org/10.1103/PhysRevA.64.034501
http://dx.doi.org/10.1016/S0375-9601(99)00801-4
http://dx.doi.org/10.1016/S0375-9601(99)00801-4
http://dx.doi.org/10.1016/S0375-9601(99)00801-4
http://dx.doi.org/10.1016/S0375-9601(99)00801-4
http://dx.doi.org/10.1088/0370-1328/77/3/329
http://dx.doi.org/10.1088/0370-1328/77/3/329
http://dx.doi.org/10.1088/0370-1328/77/3/329
http://dx.doi.org/10.1088/0370-1328/77/3/329



